

Synthetic Methods

Retention of Stereochemistry in Gold-Catalyzed Formal [4+3] Cycloaddition of Epoxides with Arenynamides**

Somnath Narayan Karad, Sabyasachi Bhunia, and Rai-Shung Liu*

Metal-mediated intermolecular cycloadditions are powerful tools to access carbo- and heterocyclic frameworks. Epoxides and aziridines serve as three-atom building units for various metal-mediated [3+n] cycloadditions (n=2,3) with small molecules. The cycloadditions of epoxides and aziridines with alkenes or alkynes exclusively proceeded through [3+2] cycloadditions, whereas [3+3] cycloadditions occurred for propargylmetal reagents. Catalytic intermolecular [4+3] cycloadditions of epoxides or aziridines have only one precedent. Herein, we report a new synthesis of seven-membered oxacycles through a gold-catalyzed intermolecular [4C+3] cycloaddition of arenynamides with epoxides (Scheme 1). Particularly notable is the observed

Scheme 1. Cycloadditions of phenylalkynes with epoxides or aziridines. EWG = electron-withdrawing group, Ts = 4-toluenesulfonyl.

retention of stereochemistry in the gold-catalyzed ring opening of epoxides during the attack of external arene nucleophiles (Scheme 1). This process contrasts sharply with a silver-catalyzed [3+2] cycloaddition between 1-phenylalkynes and aziridines, reported by Wender and Strand.^[3]

We examined the cycloaddition reactions of arenynamide 1a with isobutylene oxide 2a over cationic gold complexes, which are active catalysts for the intermolecular [4+2] cycloadditions of arenynamide 1a with electron-rich alkenes.^[10] The reaction of arenynamide 1a with epoxide 2a (4 equiv) using [PPh₃AuCl]/AgNTf₂ (5 mol %) in dichloromethane (28°C, 4 h) gave a mixture of products, from which we isolated [4+3] cycloadduct 3a in only 4% yield (Table 1, entry 1). To our pleasure, the use of [P(o-biphenyl)-(tBu)₂AuCl]/AgNTf₂ gave cycloadduct 3a in a significant proportion (62%, entry 2). [IPrAuCl]/AgNTf₂ (IPr=1,3bis(diisopropylphenyl)imidazol-2-ylidene) improved yield of desired 3a to 87% yield (entry 3). Variation of silver salts as in [IPrAuCl]/AgX ($X = SbF_6$ and OTf, entries 4 and 5) led to compound 3a in a decreased yield of 71 % and 20%, respectively; weakly acidic [IPrAuOTf] appears to be less efficient in this cycloaddition. We found no reactivity for AgNTf₂ or AgSbF₆ catalysts (entries 6 and 7). HOTf gave

^[**] We thank the National Science Council, Taiwan, for financial support of this work.

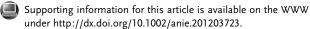


Table 1: Tests of the [4+3] cycloaddition over gold catalysts.

Entry	Catalyst ^[a]	Solvent	Time [h]	Yield [%]	
				1 a	3 a ^[b]
1	[PPh ₃ AuCl]/AgNTf ₂	CH ₂ Cl ₂	4.0	_	4
2	[LAuCl]/AgNTf ₂	CH_2Cl_2	4.0	_	62
3	[IPrAuCl]/AgNTf ₂	CH ₂ Cl ₂	1.8	_	87
4	$[IPrAuCl]/[AgSbF_6]$	CH_2Cl_2	1.7	_	71
5	[IPrAuCl]/AgOTf	CH_2Cl_2	3.0	_	20
6	AgNTf ₂	CH ₂ Cl ₂	12	85	-
7	$[AgSbF_6]$	CH_2Cl_2	12	80	_
8	HOTf	CH_2Cl_2	4.0	_	_[c]
9	[IPrAuCl]/AgNTf ₂	(CH ₂ CI) ₂	1.7	20	61
10	[IPrAuCl]/AgNTf ₂	toluene	12	14	58
11	[IPrAuCl]/AgNTf ₂	CH₃CN	12	85	-

[a] [1 a] = 0.20 m. [b] Determined after purification by column chromatography on neutral alumina. [c] Ketone 1 A was isolated in 76% yield. Bn = benzyl, IPr = 1,3-bis(diisopropyl phenyl imidazol-2-ylidene, L = (o-biphenyl)) (tBu)₂P, Ms = methanesulfonyl, Tf = trifluoromethanesulfonyl.

hydration product 1A in 76% yield (entry 8). For [IPrAuNTf₂], the yield of compound 3a depended on the solvents: dichloroethane (61%), toluene (58%), and acetonitrile (0%); unreacted 1a was recovered in 14–85% (entries 9–11). Treatment of compound 3a with HOTf (3 mol%) in wet CH_2Cl_2 (0°C, 1 h) delivered lactone 3A in 85% yield.

The chemoselectivity for seven-membered oxacycle 3a is unexpected, because similar reactions typically gave the [3+2] cycloadduct.[3,4] Accordingly, we examined the scope of arenynamides with alterable amides and aryl substituents. Table 2 shows the results for the [4+3] cycloadditions of arenvnamides 1b-1m with epoxide 2a using [IPrAuCl]/ AgNTf₂ (5 mol %) in CH₂Cl₂ (28 °C, 0.9–12 h). We obtained only seven-membered oxacycles 3b-3m after workup; the absence of [3+2] cycloadducts was ascertained by ¹H NMR spectroscopy of their crude products. These cycloadditions worked well for substrates 1b-1e, which bear various amido substituents (EWG = tosyl and mesyl; R = methyl, n-butyl, benzyl, and phenyl); the resulting cycloadducts 3b-3e were obtained in 73-85% yield (entries 1-4). We tested the reactions on arenynes 1f and 1g, which bear 4-chloro and 4bromo substituents, giving desired cycloadducts 3 f and 3 g in 71% and 64% yield, respectively (entries 5 and 6). We studied the reactions on arenynamides 1h-1j, which bear electron-rich benzenes; their resulting oxacycles 3h-3j were obtained in 65-66% yield (entries 7-9). The scope of the reactions was further expanded to arenynamides 1k-1m, which bear 2- and 3-thienyl and 3-benzofuranyl and produced cycloadducts 3k-3m in 45-74% yield (entries 10-12). A protracted period (12 h) was observed for the formation of benzofuranyl derivative 3m because of its bulky size, which is unfavorable for an S_N2-type front attack at the epoxide.

^[*] S. N. Karad, Dr. S. Bhunia, Prof. Dr. R.-S. Liu Department of Chemistry, National Tsing Hua University Hsinchu, 30013 (Taiwan) E-mail: rsliu@mx.nthu.edu.tw

Table 2: [4+3] Cycloadditions on various arenynes.

[a] [arenynamides] = $0.20 \,\text{M}$, [IPrAuCl]/AgNTf₂ (5 mol%), CH₂Cl₂. 28 °C. [b] Determined after purification by column chromatography on neutral alumina

Various epoxides 2b-2j were subjected to gold-catalyzed cycloadditions on arenynamide 1a (Table 3); except 4methoxyphenyloxirane 2e (entry 4), all these substrates produced [4+3] cycloadducts. With styrene oxide 2b and its 4-fluoro- and 4-chlorophenyl derivatives 2c and 2d, respectively, the corresponding [4+3] cycloadducts 4b-4d were produced in 60-83% yield (entries 1-3). Notably, electronrich 4-methoxyphenyloxirane 2e gave [3+2] cycloadduct 5e in 67% yield, however, the reaction took longer (6 h), thus reflecting a significant electronic effect to alter reaction chemoselectivity (entry 4). This [4+3] cycloaddition is extensible to 1,1-disubstituted epoxides 2f and 2g, which gave desired products 4f and 4g in 62% and 42% yield, respectively (entries 5 and 6). We tested cis- or trans-1,2disubstituted epoxides 2h-2j to study the stereochemical course of this [4+3] cycloaddition (entries 7-9). In the reactions of *cis*-stilbene oxide **2h** ($R^1 = R^3 = Ph$, $R^2 = R^4 =$ H), the resulting cycloadduct **4h** was obtained in 70% yield. X-ray diffraction study on compound 4h showed a cisconfiguration for its two phenyl substituents,[11] indicative of the retention of stereochemistry. For cis-2-methylstyrene oxide **2i** ($R^1 = Ph$, $R^3 = Me$, $R^2 = R^4 = H$) and its *trans* analogue 2j ($R^1 = Ph$, $R^4 = Me$, $R^2 = R^3 = H$), their corresponding products 4i and 4j were produced stereoselectively with 75% and 65% yield, respectively (entries 8 and 9); we did not obtain the other diastereomer. The cis configuration of cycloadduct 4i was likewise determined by X-ray diffraction, [11] again showing the retention of stereochemistry.

Table 3: Cycloaddition reactions on various epoxides.

[a] [arenynamides] = 0.20 м. [b] Determined after purification by column chromatography on neutral alumina.

This cycloaddition is applicable to the synthesis of enantiopure oxacycle $\bf 4i$ (93% ee) using (2R,3S)-(-)-2-methyl-3-phenyloxirane $\bf 2i$ (93% ee, Scheme 2). X-ray diffraction of $\bf 4i$ confirmed the retention of stereochemistry. [11]

Scheme 2. Synthesis of enantiopure seven-membered lactones.

Hydrolysis of this cycloadduct afforded chiral lactone **4I** in 93% *ee*. The use of enantiopure (2*S*,3*S*)-(–)-2-methyl-3-phenyloxirane **2j** (99% *ee*) efficiently delivered the corresponding cycloadduct **4j** (99% *ee*), and subsequently lactone **4J** (99% *ee*).

We examined the enantiospecificity of the [4+3] and [3+2] cycloadditions using enantiopure aryl-substituted oxiranes (Table 4); this information may enable us to understand

Table 4: Enantiospecificity for [4+3] and [3+2] cycloadditions.

Entry	Epoxide ^[a]		Products		
	2 (Ar)	ee [%]	4/5 (ee [%]) ^[b]	Yield [%] ^[c]	
1	2b (C ₆ H ₅)	99 (+)	(+)- 4b (81)	73	
2	$2c(4-FC_6H_4)$	99 (+)	(+)-4c (70)	68	
3	2d (4-CIC ₆ H ₄)	99 (+)	(+)-4d (75)	55	
4	2k (4-MeC ₆ H ₄)	99 (-)	(-)- 4k (39),	65	
			rac- 5 k (0)	(4 k/5 k=1:4)	
5	2e (4-MeOC ₆ H ₄)	99 (-)	rac- 5 e (0)	61	

[a] [1 a] = 0.20 M, 4 h for entries 1–3, 10 h for entries 4 and 5. [b] ee values were determined by HPLC analysis on a chiral stationary phase (chiralpak AD-H). [c] Determined after separation by column chromatography on neutral alumina.

the reaction chemoselectivity. For (R)-styrene oxide 2b (99% ee), its gold-catalyzed cycloaddition with arenyne 1a afforded [4+3] cycloadduct **4b** with (+)-81 % ee (entry 1). Its absolute configuration was determined to be S by X-ray diffraction, [11] again indicating a retention of stereochemistry. For (R)-4fluoro- and (R)-4-chlorophenyl oxirane **2c** and **2d** (99 % ee), their corresponding [4+3] cycloadducts (S)-4c and (S)-4d was obtained with 70% and 75% ee, respectively (entries 2 and 3). (R)-4-Methylphenyl oxirane 2k (99 % ee) gave an inseparable mixture of two the cycloadducts 4k/5k = 1:4 (entry 4); sevenmembered oxacycle 4k was obtained with 39% ee, whereas five-membered species 5k was completely racemic. For (R)-4methoxyphenyl oxirane 2e, we obtained only the racemic form of [3+2] cycloadduct 5e in 61 % yield. Our results show that formation of seven-membered oxacycle 4 occurs at the early stage of oxirane cleavage to achieve an S_N2-type retention, whereas five-membered oxacycles 5 are produced on a free benzylic cation after a complete oxirane cleavage.

S_N2-type retention of stereochemistry was documented for few stoichiometric reactions between epoxides and AlX₃ (X = Cl, Me), [12] in which a coordinated ligand X attacks at the reacting carbon center from the front side (Scheme 3).

Scheme 3. Metal-assisted ligand migration in S_N2-type retention.

This 1,4 ligand migration is in disagreement with the mechanism of the retention chemistry in our system. Scheme 4 shows a plausible mechanism for the [4+3] cycloaddition, Au-π-ynamide 1a is highly electrophilic, and also represented by its ketenimine resonance structure A. [13,14] An attack of (R)-epoxide 2b at the C=NMeMs carbon center of species A gives an oxonium species B, which still retains an oxiranyl ring. Attack of the neighboring benzene at the epoxide in an S_N2-type inversion is unlikely because of its front orientation. Instead, we envisage that species B has a ground-state conformation that involves a parallel orientation between the benzene and oxiranyl rings. This conforma-

Scheme 4. Plausible mechanisms for [4+3] and [3+2] cycloadditions.

tion facilitates a front attack of benzene at the reacting oxiranyl carbon atom because of their proximity. Formation of the C-C bond and C-O bond cleavage might be concerted, as shown in structure C (path a), subsequently forming a cyclohexadienyl cation **D**, which bears an S-configuration. This pathway is expected to give oxacyclic product (S)-4b. We envisage that the oxiranyl PhC-O bond of species **B** is rather weak to allow a C-C bond rotation. Accordingly, a small portion of intermediate B undergoes an epimerization of oxirane to form rac-B; this process rationalizes a small loss of chirality for resulting cycloadduct 4b. The high stereospecificity for 1,2-disubstituted epoxides 2i and 2j is attributed to their rigid conformation B, which has a barrier to rotate the C-O bond between the oxiranyl and alkenylgold moieties.

This postulated model also rationalizes the non-stereospecific [3+2] cycloaddition of (R)-4-methoxyphenyloxirane 2e and arenynamide 1a (Table 4, entry 5). In this instance, the corresponding benzylic cation E is readily attained because of the stabilization effect of 4-methoxyphenyl. This benzylic cation moves freely toward gold alkenyl to deliver a [3+2] oxacvcle **5e** with a complete loss of chirality.

We prepared $[D_5]$ -1a to confirm the intermediacy of species D (Scheme 5); its resulting cycloadduct [D₅]-3a has a high deuterium content (X = 0.83 D) at its alkenyl position.

Scheme 5. Deuterium labeling experiment.

This result indicates the occurrence of a deauration process at this alkenyl carbon atom.

Thus far, epoxides participated almost exclusively in metal-catalyzed [3+2]^[3,4] or [3+3] cycloaddition^[5] reactions. We have now developed a gold-catalyzed [4+3] cycloaddition of epoxides with arenynamides with a broad substrate scope.

8725

Of particular interest is the retention of stereochemistry^[15,16] for an intermolecular aryl attack at the epoxide. We used various enantiopure aryl-substituted oxiranes to study the chirality transfer in the [4+3] and [3+2] cycloadditions; their mechanisms are thus elucidated. We postulate an S_N2-type front-side attack of phenyl at the oxiranyl ring for [4+3] cycloadducts, whereas an attack at a free benzylic cation leads to [3+2] products that contain benzoxepine frameworks (represented by cycloadducts 3), which can be found in several naturally occurring compounds;^[17] their enantioselective synthesis is under current investigations.

Received: May 14, 2012 Revised: June 26, 2012 Published online: July 23, 2012

Keywords: [4+3] cycloaddition \cdot arenynamide \cdot epoxide \cdot gold catalysis \cdot retention

- For metal-catalyzed cycloaddition reactions, see selected reviews: a) P. A. Wender, V. A. Verma, T. H. Paxton, Acc. Chem. Res. 2008, 41, 40-49; b) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49-92; c) P. A. Inglesby, P. A. Evans, Chem. Soc. Rev. 2010, 39, 2791-2805; d) S. M. A. Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269-2281.
- [2] For selected reviews for epoxides and aziridines, see: a) A. K. Yudin in Aziridines and Epoxides in Organic Synthesis, Wiley-VCH, Weinheim, 2006; b) K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863-910; c) W. Carruthers in Cycloaddition in Organic Synthesis, Pergamon, Oxford, 1990, p. 1.
- [3] P. A. Wender, D. Strand, J. Am. Chem. Soc. 2009, 131, 7528-7529.
- [4] a) I. Ungureanu, P. Klotz, A. Mann, Angew. Chem. 2000, 112, 4790-4792; Angew. Chem. Int. Ed. 2000, 39, 4615-4617; b) J. Sisko, S. M. Weinreb, J. Org. Chem. 1991, 56, 3210-3211; c) R. J. Madhushaw, C.-C. Hu, R.-S. Liu, Org. Lett. 2002, 4, 4151-4153; d) S. C. Bergmeier, S. L. Fundy, P. P. Seth, Tetrahedron 1999, 55, 8025-8038; e) Y. Sugita, Y. Kimura, I. Yokoe, Tetrahedron Lett. 1999, 40, 5877-5880; f) M. Nakagawa, M. Kawahara, Org. Lett. 2000, 2, 953-955; g) J.-G. Shim, Y. Yamamoto, J. Org. Chem. 1998, 63, 3067-3071; h) J. S. Yadav, B. V. S. Reddy, S. K. Pandey, P. P. Srihari, I. Prathap, Tetrahedron Lett. 2001, 42, 9089-9092; i) J. Fan, L. Gao, Z. Wang, Chem. Commun. 2009, 5021-5023.
- [5] a) R. J. Madhushaw, C.-L. Li, J.-C. Hu, R.-S. Liu, J. Am. Chem. Soc. 2001, 123, 7427-7428; b) K.-H. Shen, S.-F. Lush, T.-L. Chen, R.-S. Liu, J. Org. Chem. 2001, 66, 8106-8111; c) S. Hedley, W. J. Moran, D. A. Price, J. P. A. Harrity, J. Org. Chem. 2003, 68, 4286-4292.
- [6] a) K. Yamaguchi, K. Ebitani, T. Yoshida, H. Yoshida, K. Kaneda, J. Am. Chem. Soc. 1999, 121, 4526–4527; b) C. M. Miralda, E. E. Macias, M. Zhu, P. Ratnasamy, M. A. Carreon, ACS Catal. 2012, 2, 180–183.
- [7] a) B. M. Trost, A. R. Sudhakar, J. Am. Chem. Soc. 1987, 109, 3792-3794; b) B. M. Trost, A. R. Sudhakar, J. Am. Chem. Soc. 1988, 110, 7933-7935; c) C. Larksarp, H. Alper, J. Am. Chem. Soc. 1997, 119, 3709-3715; d) G. Bez, C.-G. Zhao, Org. Lett. 2003, 5, 4991-4993.
- [8] A BF₃-mediated [4+3] cycloaddition was recently reported for epoxides and aromatic unsaturated ketones, but no stereochem-

- istry was involved. See: Y.-Q. Zhou, N.-X. Wang, S.-B. Zhou, Z. Huang, L. Cao, *J. Org. Chem.* **2011**, *76*, 669–672.
- [9] For gold-catalyzed [4+3] cycloadditions, reported examples were performed exclusively in an intramolecular fashions. See a) F. López, J. L. Mascareńas, Beilstein, Beilstein J. Org. Chem.
 2011, 7, 1075-1094; b) M. Gulías, F. López, J. L. Mascareńas, Pure Appl. Chem. 2011, 83, 495-506; c) P. Mauleón, R. M. Zeldin, A. Z. González, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 6348-6349; d) B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós, J. L. Mascareńas, Chem. Eur. J. 2009, 15, 3336-3339; e) I. Alonso, H. Faustino, F. López, J. L. Mascareńas, Angew. Chem. 2011, 123, 11698-11702; Angew. Chem. Int. Ed. 2011, 50, 11496-11500; f) I. Alonso, B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós, J. L. Mascareńas, J. Am. Chem. Soc. 2009, 131, 13020-13030.
- [10] R. B. Dateer, B. S. Shaibu, R.-S. Liu, Angew. Chem. 2012, 124, 117-121; Angew. Chem. Int. Ed. 2012, 51, 113-117.
- [11] X-ray crystallographic data of [4+3] cycloadducts **4h**, **4i**, and (S)-**4b** are provided in the Supporting Information.
- [12] a) J. H. Brewster, J. Am. Chem. Soc. 1956, 78, 4061 4064; b) M. Inoue, T. Sugita, Y. Kiso, K. Ichikawa, Bull. Chem. Soc. Jpn. 1976, 49, 1063 1071; c) T. Nakajima, S. Suga, T. Sugita, K. Ichikawa, Tetrahedron 1969, 25, 1807 1916.
- [13] For chemistry of ynamides, see: a) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev. 2010, 110, 5064-5106; b) G. Evano, A. Coste, K. Jouvin, Angew. Chem. 2010, 122, 2902-2921; Angew. Chem. Int. Ed. 2010, 49, 2840-2859; c) A. S. K. Hashmi, M. Rudolph, J. Huck, W. Frey, J. W. Bats, M. Hamzić, Angew. Chem. 2009, 121, 5962-5966; Angew. Chem. Int. Ed. 2009, 48, 5848-5852.
- [14] For gold-catalyzed electrophilic activation of ynamides, see reference [13] and selected examples: a) C.-W. Li, K. Pati, G.-Y. Lin, S. M. A. Sohel, H.-H. Hung, R.-S. Liu, Angew. Chem. 2010, 122, 10087 - 10090; Angew. Chem. Int. Ed. 2010, 49, 9891 - 9894; b) P. W. Davies, A. Cremonesi, N. Martin, Chem. Commun. 2011, 47, 379 – 381; c) C. Li, L. Zhang, Org. Lett. 2011, 13, 1738 – 1741; d) D. Vasu, H. H. Hung, S. Bhunia, S. A. Gawade, A. Das, R.-S. Liu, Angew. Chem. 2011, 123, 7043-7046; Angew. Chem. Int. Ed. 2011, 50, 6911-6914; e) S. Kramer, Y. Odabachian, J. Overgaard, M. Rottländer, F. Gagosz, T. Skrydstrup, Angew. Chem. 2011, 123, 5196-5200; Angew. Chem. Int. Ed. 2011, 50, 5090-5094; f) A. S. K. Hashmi, M. Bührle, M. Wőlfle, M. Rudolph, M. Wieteck, F. Rominger, W. Frey, Chem. Eur. J. 2010, 16, 9846-9854; g) P. W. Davies, A. Cremonesi, L. Dumitrescu, Angew. Chem. 2011, 123, 9093-9097; Angew. Chem. Int. Ed. 2011, 50, 8931-8935; h) P. Garcia, Y. Harrak, L. Diab, P. Cordier, C. Ollivier, V. Gandon, M. Malacria, L. Fensterbank, C. Aubert, Org. Lett. 2011, 13, 2952.
- [15] Complete retention of stereochemistry has been reported for the reactions of epoxides or aziridines with CO^[16] and CO₂^[6a] using low-valent metals; their mechanisms are distinct from those reactions that use Lewis acid to implement nucleophilic attack at epoxides.
- [16] a) J.-T. Lee, P. J. Thomas, H. Alper, J. Org. Chem. 2001, 66, 5424-5426; b) S. Calet, F. Urso, H. Alper, J. Am. Chem. Soc. 1989, 111, 931-934.
- [17] a) J.-H. Liu, A. Steigel, E. Reininger, R. Bauer, *J. Nat. Prod.*2000, 63, 403-405; b) F. Meriçli, A. H. Mericli, H. Becker, A. Ulubelen, *Phytochemistry* 1996, 42, 1257-1258; c) A. Ulubelen, E. Tuzlaci, N. Atilan, *Phytochemistry* 1989, 28, 649-650.